We’ve been preaching “one big texture, not lots of little textures” for a while now, and generally speaking, packing a lot of art into one big texture makes life eaiser for X-Plane, because it can draw more triangles at once before it has to tell the card to change what it’s doing. Inside the company we call this the “crayon rule“.

Now the total set of geometry and textures that X-Plane needs to use for one frame is the “working set” – you can think of it as the crayons that you keep out of the box because you need them all the time. And as I said before, if the working set becomes too big, your framerate dies.

Now with large panels we’re seeing a new phenomenon, one of the first cases where the crayon rule might not be true. The reason is due to working set.

When you make an airplane with a large panel in version 9, you can either use ATTR_cockpit, which lets you use the entire panel as a texture, or you can use ATTR_cockpit_region, which will let you use several parts of the panel. Each ATTR_cockpit_region is a texture change, so that’s more crayons. And yet ATTR_cockpit_region is usually faster.

The reason is two-fold:

  1. You can often use cockpit regions that don’t cover the entire cockpit texture. Large panels are rounded up to 2048 if the are larger than 1024 in any dimension, so the “wasted space” in a 1600×1600 panel is actually quite huge. If you can get away with some smaller regions, your total panel texture area is smaller because there isn’t wasted space due to this rounding, and you can also skip things like Windows. Prepping the panel texure takes time, and it’s done once for lit and once for non-it elements, so it adds up!
  2. It turns out there are two categories of textures that contribute to the working set: static texures and dynamic ones, and their impact on VRAM is very different. Dynamic textures are much more expensive. The panel texture is dynamic and it’s uncompressed, so it really costs a fortune. (32 MB of VRAM for 1600×1600. That’s not a lot for a static texture but for a dynamic one that’ll kill you.)

Here’s the details on dynamic vs static textures: the OpenGL driver keeps a backup copy of a texture in main memory, so that if it has to purge VRAM (to make room for more stuff) it still has the texture. As it “swaps” textures, the process is to simply send textures as needed from main memory to VRAM. No big deal.

But with a dynamic texture, the texture has been modified in VRAM! So the copy in system memory is old and stale. The graphics card thus must send the texure back to main memory, consuming twice as much bus bandwidth as normal. (To free 16 MB of VRAM and refill it takes 32 MB of transfer, 16 MB to copy the old texture back to system RAM and another 16 to send the new textures to VRAM.) On non-PCIe cards, this back-transfer might be at 1/8th the speed of the transfer to the card, so this is even worse on AGP cards.

Thus the driver does its best to not throw out dynamic textures. And this is why the panel texture is so expensive. That P180 will cause X-Plane to make two 16-MB dynamic texures, and those textures will cause 32 MB of VRAM to basically be off the table. That’s less space for the other textures to swap in and out of. This kind of “permanent allocation” makes the VRAM budget tighter for all other drawing operations.

Given the right combination of large panels, large res, pixel shader effects (which make more dynamic textures), clouds, and FSAA, you can easily get even a 256 MB card to a state where the free space into which static textures are shuffled becomes horribly small, and the framerate just dies.

So the moral of the story is: yes, it can be worth 4 crayons (using panel regions) to avoid the huge cost of dynamic textures from large panels.

As to static textures (regular DDS files) that are 2048×2048 – the jury is still out but my guess is they don’t represent a huge performance problem. As one user pointed out to me, they’re only 2 MB when compressed (maybe more with alpha) so they’re not insanely huge, and they can be swapped out.

About Ben Supnik

Ben is a software engineer who works on X-Plane; he spends most of his days drinking coffee and swearing at the computer -- sometimes at the same time.