Tag: performance

DX10: Why I’m Not an Early Adopter

Before I begin, X-Plane uses OpenGL as its interface to 3-d hardware, not Direct3D. So when I talk about “X-Plane doesn’t utilize DX10”, isn’t that meaningless? I mean, X-Plane has never supported any version of Direct3D.

But I like to use the term “DX9” and “DX10” anyway for this reason:

  • For all practical purposes, within the “games space”, most advances to the Direct3D and OpenGL APIs that I care about are created for the purpose of exposing new hardware capabilities to applications. That is, the point of DX10 (including the new Direct3D) is to allow games to use the newest video cards more efficiently.
  • OpenGL is revised by adding “extensions”, that is, independent features that can be mixed and matched. DirectX tends to have whole-API revisions. So I prefer DirectX because it puts a nice “number” on an entire set of technology. Since the graphics cards are revised in generations as new GPUs are designed, these generations match up reasonably well with the hardware.

So in this context, when I say “DX10” I really mean the very newest set of super-programmable cards, of which the GeForce 8800 is the first, and by use them I mean take advantage of some of these really great new features:

  • Instancing (the ability to draw a lot of objects with only one command to the card, which could relieve the CPU cost of huge numbers of objects).
  • Geometry shaders (the ability to do per-triangle and not just per-vertex calculations on the graphics card) which could move some of the logic for terrain generation to the graphics card. (We precompute this and save it in the DSF in X-Plane, so we use DVD space and RAM, while I believe MSFS does this kind of thing on the CPU.)
  • Better management of state changes (good for unloading the CPU).
  • A bunch of really interesting ways to work with data strictly on the card (don’t know what it’s good for yet, but it unlocks a lot of cool possibilities).

So why doesn’t X-Plane utilize all of these new features? Or rather, when will we?

Well, my goal in working on X-Plane’s rendering engine is to know these things are coming but not be an early adopter. The way I look at the economics of software development is: the amount of labor we can put into a release is somewhat constrained. If we put in more months between releases, we have fewer releases. If we have more programmers, we have to pay them more, and we have to charge more money. There’s a lot of things you can say (or people have told us) about our business model. But I tend to view these as the invariant conditions we have to work with.

So what I worry about is efficiency: if we are limited to exactly X man-months of work per release, how can we make the best of them? Is being an early adopter the most efficient use of limited programmer resources when developing X-Plane? (We have to consider opportunity cost: what features won’t be implemented because we spent time on early adoption of new graphics technologies.)

I think there are a few things going against early adoption, particularly for a small company like us where labor is at a premium. (Our list of things we can be doing is very long, so any new feature takes away from a lot of other good ideas.)

  • New graphics hardware isn’t widely distributed among our user base. If we adopt DirectX-10 style features, this work helps a very small numer of our users. Eventually everyone will have hardware like this, but we can cover a case by adapting the new technology later.
  • When new features come out, there is often vendor disagreement on how to code for them. It takes time to come up with cross-vendor standards. Consider that ATI hasn’t come out with their DX10 hardware, and the OpenGL extensions to use these are all nVidia proposals. My guess is that ATI will have their own extensions, and the real ones that get used will be a mix of each. If we adopt now, we’ll be “betting on the wrong horse” a few times — code that will have to be rewritten, for a total loss of efficiency.
  • New drivers can be buggy. It takes a while for support for new features to be both universal and reliable. The earlier we jump in, the buggier the environment we develop in, and thus the more difficult it is for us to develop.

Of course, there’s definitely a cost. The 8800 is capable of doing some amazing things, and X-Plane does not yet fully take advantage of it. But I do believe that in the long term we end up delivering more value to X-Plane users by taking a slower wait-and-see approach to new hardware.

(To GeForce 8800 users I can only say that the code we write now while waiting for the right environment may do some cool things too, so we’re not just taking a vacation! And the GeForce 8800 also delivers an overall speed boost to the entire system.)

EDIT: the same logic applies to operating systems like Vista and OS X 10.5 to some extent, but I hesitate to bring this up because: a number of users are having problems with X-Plane and Vista, and it is not because we have delayed support for Vista. The real problem is that the graphics card drivers for Vista are still new and have some problems. I believe that the various Vista problems we’re seeing will be addressed by code changes by ATI and nVidia.

Posted in Development by | 1 Comment

I’m not a fan of SLI/CrossFire

When it comes to video cards, I’ve always been in the “don’t spend more than $200” school of thought. My logic is: video card technology moves so fast that paying a lot of money for the “first six months” of any new technology level is very expensive. Bless all of you who are early adopters – you’re helping keep nVidia and ATI humming, but it’s an expensive hobby to main an up-to-date machine.

This is one of my favorite tables (there is a similar one on Wikipedia for ATI). It shows performance of graphics cards and when they came out. Compare the GeForce 7950 GT2 and the GeForce 8800 GTS. If you want 24,000 MT/S of fill rate, you could buy a top-of-the-line two-cards-in-one-via-SLI 7950, but if you waited six months, a SINGLE intermediate-speed 8800 would give you the same thing while supporting DX10 shaders (e.g. geometry shaders, instancing, and all that awesome stuff). The 7950 GT2 apparently retailed at $600+, which was a real discount compared to actually chaining two separate 7950’s together (that’d get you up around $850). Look on newegg.com and you’ll see that GeForce 8800 prices aren’t that expensive (compared to an SLI combination). And the 7950 GT2’s come down a lot from what it used to cost.

For another datapoint, compare the Geforce 7600’s to the GeForce 6800’s. The 6800 was the monster card when it came out, putting nVidia back in the number one spot. But the next-generation’s intermediate range cards can do what was top-end before. (The 7600 can be had for a little over $100. Compare that to several hundred for the 6800 ultra about one year earlier.)

Simply put, you pay a huge premium to get a given performance level when it’s new and top-end. Wait one generation of cards (by buying last-year’s top end cards or this-year’s middle-range cards) and you save a lot.

It’s in this context that I don’t believe that SLI makes a lot of sense. In an environment where (IMO, and my opinion only) the top-end video cards are already expensive for what they do, SLI simply makes the situation worse, by allowing you to spend double what the already-high-end cards cost to get performance that will be available in one card in the next generation.

To do the math, does it make sense to spend double the price on your video card to extend its useful life by six months? Only if you intend to change cards every six months.

(nVidia makes an argument that SLI allows developers to preview the next-gen hardware, and this is true. My strategy is different: simply run X-Plane slowly and assume that the next-generation hardware will go faster.)

I don’t feel good about criticizing nVidia and ATI because overall I feel that their products provide an extraordinary value at a very good price, and the growth of performance in video cards has been astounding. Todays cards just hit it out of the park.

But to me SLI and CrossFire strikes me as a solution looking for a problem. They solve the problem of making the most expensive cards more expensive, but I don’t think they’re the best way to spend money on a flight simulation system. (Better might be to not buy at the “SLI/Crossfire” level of video cards, meaning spending $700+ on your video cards, but rather to go down a level and upgrade your motherboard/CPU more frequently.)

Some users email me asking for video card recommendations, in particular whether to buy an SLI/Crossfire configuration. The bottom line is, it depends on how much you value your money vs. your graphics card performance. If money is on object, and you want maximum speed, SLI configurations will provide the fastest performance (by some marginal amount). I believe that a good value lies below $200.

On the other side of the equation, I do recommend that everyone spend at least $100 if you’re going to buy a video card at all. Below $100 the price cuts come from remaindering really old inventory and removing parts from the card to save cost. For the savings of $25 you might lose half your card’s performance or half of its VRAM when you get down to the really cheap cards.

The other thing I tell users is the truth: no one at Laminar Research has an SLI system, so the reports we get on SLI come from users. Some users have told us they’ve gotten some benefit at very high FSAA levels. But at this point a single 8800 wll do the same thing. And SLI doesn’t address CPU speed at all. Consider this list of features – nothing on the CPU side will get even remotely faster with SLI.

And in full disclosure: my two Macs have a Radeon X1600 Mobility, a Radeon 9600, and a GeForce 5200 FX sits on the shelf for testing purposes. (This isn’t intentional bias toward ATI, it’s what Apple ships.)

Posted in Development by | 5 Comments

Using Layer Groups

I can’t say enough good things about Jonathan Harris (Marginal) — his work on X-Plane has been fantastic, he is one of the most advanced third party scenery authors I know of, and when he sends us a bug report, it is usually so perfectly patched up that I’m looking at the bad line of code in minutes! (One of these days I’ll post one of his bug reports — he always isolates the bug in a simple package that makes it very clear, with no extra “stuff”.)

He emailed me a while ago with some questions about layer groups, and I saved them to rewrite into a blog entry. A little bit of background:

X-Plane 850 and 860 introduce the concept of “layer groups”, which provide a way to control the draw order of scenery to some extent. Objects naturally fall into a layer group based on their type (e.g. objects go into the “object” layer group by default, and runways always go into the runway layer group). However, some scenery elements let you customize their layer-group placement in two ways:

  • By changing which layer group the element goes to entirely, or
  • By providing a “bias number”, which indicates that within the catagory of scenery elements, this one must be drawn early or late.

Layer groups let you do a number of useful things:

  • Make sure that polygons and objects are drawn under runways or over taxiways when needed.
  • Make sure that runway markings with polygon offset are drawn before 3-d objects.

Simply changing the order of objects in the DSF is not a reliable way to control draw order! Layer groups are. You can read about layer groups in the OBJ8 spec.

With that in mind, some Q and A. (I will elaborate on my answers from what I originally sent Jonathan.)

J: I assume that objects and polygons within a single layer can be drawn in any order – ie there’s no defined drawing order between different scenery types.

B: You assume correctly! Within a layer group, X-plane is free to reorder to improve fps. So you cannot rely on the draw order of any two scenery elements without assuring that they are in different layer groups, either by using different group names, or different relative offsets.

J: But is there are defined drawing order between objects/polygons and apt.dat-generated scenery?

B: Yes because airport scenery goes into specific layer groups! (In fact, all scenery has a “default” layer it goes into, and they usually vary by type of scenery element.)

J: eg if I have an object or polygon with ATTR_layer_group runways 0 will it be guaranteed to be drawn after the runway?

B: You’re close. The runways go into the runways group so

ATTR_layer_group runways -1

will always be before runways and

ATTR_layer_group runways 1

will always be after.

ATTR_layer_group runways 0

is the default layer group for runways, so your object or polygon would be in the layer group with all of the other runways, and X-Plane would be free to change the order amongst your object and runways in any way that would optimize framerate.

J: If not, is there any other way to insert objects and/or polygons between the taxiways and the runways?

B: The numeric offset is provided for this. The “spacing” of the layer group numbers is such that you can have up to 5 groups before and after each “named” group. So anything from runways -5 to runways +5 is fair game. (In other words, you can separately control up to 5 different “layers” of elements with a well-defined order for any layer group name.)

Posted in File Formats, Scenery by | Comments Off on Using Layer Groups

CPU or GPU

If your X-Plane is framerate low, or you want to increase your rendering quality, you might think “time for a new graphcis card But is it?

Some rendering settings actually tax the CPU more than the GPU (graphics card). Here’s a simple rule of thumb: if you increase the setting (and restart X-Plane) and your frame-rate does not go down, a new graphics card isn’t going to make it go up!

For example, if you have one of those new-fangled GeForce 8800s, you may have noticed that when you turn on FSAA the framerate doesn’t dip at all. That’s because the 8800 is insanely overpowered for X-Plane (at normal monitor resolutions) and has plenty of extra capacity that will be sitting idle on an older PC. When you turn up FSAA, you are simply wasting less of the card’s excess capacity. It goes without saying that if there were a card faster than the 8800, it wouldn’t improve your fps any more than the 8800, it would simply be even more bored.

Here’s a rough guide to which features tax the CPU vs GPU:

CPU-Intensive

  • World Level of Detail
  • Number of Objects
  • Draw Cars On Roads
  • Draw Birds (not that expensive for modern machines)
  • Draw Hi Detail World
  • World Field Of View (wider view means more CPU work!)

GPU-Intensive

  • Texture Resolution (requires more VRAM)
  • Screen Resolution
  • Full Screen Anti-Aliasing (FSAA)
  • Anisotropic Filtering (most cards can do at least 4x)
  • Draw Hi-Res Planet Textures From Orbit
  • Cloud Shadows and Reflections (not that expensive)
  • Draw Hi Detailed World

A few specific framerate-optimization warnings:

  • FSAA is equivalent to a higher screen resolution – that is, running at 2048×2048 and no FSA is similar to running at 1024×1024 and 4x FSAA. Both of these tax the video card with virtually no CPU increase. This is probably the only setting that can be helped only with a video-card upgrade.
  • Texture resolution: do not worry if the total size of all textures loaded is larger than the VRAM of your card. To find out if more VRAM would help, measure frame-rate with your normal settings, with texture resolution down a notch, and with anisotropic filtering down a notch. If turning texture resolution down increases fps more than turning down anisotropic filtering, more VRAM may help. Machines with faster graphics busses (like PCIe x16) will be less sensitive to VRAM.
  • Most Important: do not ever turn “World Detail Distance” beyond the default setting – you will simply destroy your fps and chew up your CPU for no benefit. I strongly recommend trying “low” for this setting – if you like a lot of objects, this setting can make a big difference in performance.
  • The number of objects is virtually always a factor of how fast your CPU is, not your GPU — that is, most GPUs can draw about a gajillion objects if the CPU could only get through them fast enough. If you are unhappy with the number of objects you can draw, do not expect a new graphics card to help – it probably won’t.
  • Cars on roads hurt fps on machines that don’t have the fastest CPU.
  • Draw Hi detail World is doubly dangerous – it uses both the CPU and GPU. Quite literally this is where we stash “luxurious” options. Everything this checkbox does chews up framerate. (If these options didn’t, we’d leave them on all the time!) So you should not use this option if you aren’t happy with fps, if you don’t have a fast CPU, or if your graphics card isn’t that modern. (HINT: if your nVidia card has “FX” in the title, don’t use this!)

Start with the default settings and experiment – turn a setting up one notch, then restart, then turn it down and try another. Different machines will be faster for some things and slower for others.

EDIT: one user correctly determined (by observing CPU utilization relative to settings) that puff-style 3-d clouds bottleneck the GPU, not the CPU! This was not what I expected – when Austin originally wrote that code, our measurement indicating that sorting the puffs from far to near taxed the CPU a lot, making this CPU-intesive. At the time the old Rage 128s would also get bogged down by filling in translucent puffs as you flew right into the thick of the cloud.

Times have changed and neither the sorting nor the alpha-drawing is even remotely expensive on a modern machine. So I was surprised to see the CPU not being used. After some investigation, it turns out that while the CPU and GPU have gotten a lot faster over time, the communciations channel between them has not. The result is that they both do their jobs really quickly, and as a result clog up the communications channel…the CPU simply can’t talk to the GPU fast enough to get the clouds out.

This is a great find by this user, as this is something that didn’t matter on old machines, but can be optimized in the future for new ones.

15 Comments

Stupid Command Line Tricks

If you have a dual core Intel Mac, OS X 10.4.9, X-Plane 8.60 and an Intel Graphics chip, try running the sim with this command-line option:

–use_threaded_ogl

You can read about how to use X-Plane with command-line options here.

Posted in Development by | Comments Off on Stupid Command Line Tricks

LOD Part 1 – What LOD Really Does

This series of posts will discuss how the LOD system works for objects. Understanding LOD is very important for tuning the performance of custom scenery that uses either very complex objects, or a very large number of objects.

Authors View vs. X-Plane’s View

A “level of detail” for an object is a complete representation of the model with complexity changed to fit a viewing distance. In other words, LODs are copies of your objects, some of which have been simplified so they will draw faster when far away.

Each LOD for an object contains a viewing range, indicating for which range it is appropriate to use this LOD.

An X-Plane object can have LOD information, via the ATTR_LOD attribute. If it does, it may have one or more “LODs” – that is, separate representations of the same object.

If an X-Plane object has no ATTR_LOD command, X-Plane turns the entire object into one LOD by automatically calculating the viewing range based on the size of the object. (I’ll discuss this in more detail in later posts.)

This last point is important because it means that, to X-Plane, every object has at least one LOD. If an LOD is not provided by the author, one is created!

Picking an LOD

When X-Plane draws an object, it measures roughly how far away it is and picks the LOD within the object to draw. This can save some frame-rate but isn’t a cure-all.

– The cost of animation and attributes is based on the LOD drawn. So if you have an object with a lot of animation that is not visible a long way away, using a second, simpler LOD with no animation will help framerate because X-Plane won’t evaluate the animation when the complex LOD is not drawn.

– The cost of moving the texture to the graphics card is incurred no matter what LOD is picked, so you don’t save on “working set” (that is, the effective amount of VRAM X-Plane needs) with LOD. If your object has a huge texture, you pay that cost any time it is drawn.

– The cost of the number of triangles in the model is partly saved by using a simpler LOD, but it is partly global to the entire object. The problem is that all of the geometry coordinate data for objects is kept together in one giant glob. So when the tiny simple version of your model is being drawn, X-Plane may be shoveling the complex version to the card anyway.

This last point is important: making more LODs may actually increase the total amount of geometry data and make performance worse. Therefore while it may help a lot to have a second LOD that is much simpler, having 10 LODs, each slightly simpler than the last will probably hurt performance. Be sure to try your objects on a computer that doesn’t have a lot of free VRAM to see the effect of more LOD!

Don’t Draw That Object

While you can save some frame-rate by having X-Plane draw a simpler LOD, the true power of the LOD system happens when an object is so far away that none of the LODs apply. For example, if my object has 3 LODs from range 0-1000 meters, 1000-3000 meters, and 3000-6000 meters, then once the object is over 6 km away, X-Plane simply doesn’t draw it at all!

Not drawing an object is great for framerate. Not only do we save the time on the animations and attributes, but X-Plane never has to process the texture or geometry data, and that’s where the real framerate win comes from. Therefore the most important question for object LODs is “what is the maximum LOD” – that is, what is the farthest distance before X-Plane can stop drawing your object. X-Plane is pretty efficient at recognizing cases where objects, or even whole classes of objects, are simply too far away to draw.

(Consider the runway lights with the new “high detail world” setting…X-Plane places an object for every single runway/taxiway light, of which there are almost 10,000 at Chicago O’hare. But since the maximum LOD for these tiny objects is only 500m, X-Plane then eliminates the vast majority of the objects very early on and doesn’t bother to draw them, keeping framerate up.)

To draw a stupid analogy: the shorter the grocery list, the quicker your shopping. But if your grocery list has NO items and is totally EMPTY, you don’t even have to drive to the store, which really saves you time.

In the next part I will discuss world level of detail and maximum LOD didstances.

Posted in Development, Scenery by | 4 Comments

Warning: Orthophoto Polygons Are Not a Magic Bullet

With the new version of DSF2Text and X-Plane 8.60 it is possible to overlay orthophotos on top of DSFs. I’ll get into this in more detail in a future blog post…the purpose of this post is to be a wet blanket.

Using polygons to overlay orthophotos on the base mesh might seem perfect. It’s easy to do and you can clip polygons to any shape. Perfect, right?

WRONG!!!!

There are a few major problems with overlay polygons that make them well suited to some cases but not a general purpose cure-all for orthophoto-based scenery. Here’s the fine print:

  1. Orthophoto polygons draw over the base mesh. In particular the base mesh is still drawn underneath the orthophoto. This means that wherever you use them, X-Plane is drawing twice! This is bad for performance…it will cut the speed of mesh drawing in half. Ouch! (This is not an issue when working on very small areas like airports, but it is an issue when working on very large areas.)
  2. Polygons are not built up until you fly near them. Polygons are part of the 3-d “clutter” part of the scenery not the base mesh, so we defer building them until we get near them to save memory. (This is the same as airports – look at an airport in textured map mode when far away from it — no taxiways!) But this means that if the orthophoto is huge (and thus visible far away) its absense will be quite obvious.
  3. Polygons burn CPU time when they are built up. For very small polygons this isn’t that noticable, but the larger the polygon, the more work X-Plane does “draping” it over the base terrain. So on single-CPU systems with large polygon orthophotos, the framerate may be adversely impacted.

Basically overlay polygons are great for texturing small areas like airports or special landmarks within a city, but are not appropriate for making wide-scale orthophoto base meshes. For that you really need to replace the base mesh DSF!

Posted in Development, Scenery by | 2 Comments

Now We Are 3

With X-Plane 860, we now mark the X-Plane executable as being capable of using 3 GB of virtual memory on Windows. This means that if your copy of Windows can support large address spaces and you have a powerful enough PC, you can now use more add-ons. (Mac and Linux have always gone to 3 GB by default.)

You can read more about setting Windows up to handle large address spaces here. Please don’t try this if you don’t know what you’re doing, and please don’t contact our tech support if you destroy your copy of Windows — we can’t support the whole OS.

Please note that this change does not improve the hardware capabilities of your computer – it only enables X-Plane and Windows to take full advantage of what you have. You will not see a performance boost because of this.

1 Comment

Logitech Joystick – Framerate Fix

I found the reason for frame-rate loss for Logitech sticks…everything in this entry is Mac specific.

X-Plane has (for a long time) done a rather poor job of parsing the HID descriptors that
the driver provides for USB joysticks on OS X. However it turns out that in the case of Logitech, after we found the 4 axes the joystick usually has (pitch, roll, yaw and throttle) we then went on to misparse a bunch of strange stuff at the end of the stick as more axes. It turns out that reading those axes causing some kind of huge framerate loss. I don’t fully understand this, but given the HID spec I’ve seen I’m not hugely surprised.

Why is this x86-Mac specific? I don’t know! Why is this so much worse in 860? Well, in 860 we raised the number of axes from 6 to 8. With more axis slots, we tried to read more incorrect parts of the logitech stick, for more fps loss.

The solution is one that’s been a long time coming: I’ve rewritten a bit of our Mac HID-parsing code to do a better job of figuring out what’s a joystick element and what’s not.

The bad news is: for the next few betas there may be some broken joysticks. If you have a joystick and it stops working in the next beta, please file a bug and include as much specific info about your joystick as you can.

The good news is: I think we will get almost all of the fps back on x86 Macs – Logitech users will not need to get new sticks.

A side effect is that we should no longer have “dead” slots – that is, buttons and axes that didn’t do anything. This should allow you to use more of your X-52 if you have one.

5 Comments

A Change in Settings – 3-d Lights

For X-Plane 860 beta 6 I think we may change the way the airport lights setting works. Since
(despite my previous rantings) there is a lot of discussion of performance based on settings (e.g. “I used to get 40 fps with this menu pick, now I need this other menu pick”) as opposed to based on what the sim is actually doing, allow me to go off in some detail about what’s going on under the hood.

During X-Plane 850 and 860, I tried to fix a number of long-standing “quality” issues, where the sim had small artifacts. There is a fps penalty to fixing these artifacts that I thought was small, but the message is clear:

  • Some users are flying X-Plane on lower-end systems and can’t spare a single fp.
  • A lot of users really don’t care about the quality issues and would gladly trade back the visual “improvement” (which doesn’t seem like an improvement after living with the issue for 4 years) for those few fps that mean the difference between clear skies and fog.

So…with that in mind, let me explain runway lights for 3 versions of X-Plane.

X-Plane 840 and earlier
In X-Plane 840, lights could be textured or untextured. This was controlled by a simple checkbox “draw textured lights”. A few lights (on the airplane, for example) were always textured because we thought they were few in number and important visually. The rest was decided by the checkbox.

No airport light ever had a 3-d “structure” (e.g. you couldn’t see the light housing and support rod).

No light was ever drawn using hardware acceleration, even if the graphic card had pixel shaders; we simply didn’t have the code. Therefore textured lights ate up a lot of CPU power and thus ate up a lot of framerate. But life was simple!

X-Plane 850
With X-Plane 850 things got a lot weirder.

  • We rewrote the lighting engine to optionally use pixel shaders if present. This improves performance of textured lights a lot. In fact, on a given machine with pixel shaders, textured lights with hardware acceleration are faster than non-textured lights without hardware acceleration. (For hardware accelerated lights, the texturing doesn’t cost anything compared to hardware accelerated untextured lights.) It’s important to note this performance fact!
  • Sergio created a bunch of 3-d object lighting fixtures for the runway environment. They have a low LOD, but up close you can see the actual lighting structure.

So what to do about that setting? Well, basically with the check box on we did the nicest looking thing, and with the check box off, we did the fastest thing. (The check box’s label doesn’t do a good job of representing this.) We thus have four possibilites:

  1. Checkbox off, no pixel shaders: we draw untextured lights using software, no objects.
  2. Checkbox off, with pixel shaders: we draw textured lights using hardware, no objects.
  3. Checkbox on, no pixel shaders: we draw textured lights using software, with objects.
  4. Checkbox on, with pixel shaders: we draw textured ilghts using hardware, with objects.

This is plenty confusing if you ask yourself “what is this checkbox going to do” – it depends on your hardware. But the rule is quite simple if you consider the intent: we either give you the fastest (off) or nicest (on) rendering we can.

X-Plane 860
With the next X-Plane 860, we’re going to use this checkbox to control multiple aspects of the sim, but always with two choices: either prioritizing visual quality, or prioritizing framerate.

So this option will not only pick the fastest (or nicest) light code and turn the objects on and off, but it will also, for example, turn on or off per-pixel fog (something that looks nice but is slower than the old per-vertex fog).

I’m not sure everyone will like this, but I think it will meet some important needs:

  • It will make it obvious how to set the checkbox. Either you want speed, or quality.
  • It keeps the config interface simple for new users.
  • It gives us a way to tie in a number of small optimizations that add up when taken in concert.

It seems to me that we’re seeing the haves and have-nots. If you’ve got a Core 2 CPU and a 7000-serise GPU, things like per-pixel fog are chump change. If you’ve got a G4 with a Radeon 9200, you need any speed you can get. So hopefully this change will make the UI clearer and help us meet everyone’s needs.

Posted in Development by | 2 Comments