Well, this is embarrassing. I’ve been meaning to post to the dev blog for months now; all sorts of new features, important bug fixes, and interesting tech has gone by. As you can imagine, it’s been really, really busy with the release of X-Plane 12 and subsequent updates, plus a number of us spend time in the dev lobby trying to help third parties and sharing pre-release experimental code.
So this post will be a quick overview of some of what has been going on and what is coming.
Move Fast and Fix Things (Hopefully)
Since we shipped X-Plane 12.00, we’ve been aiming for a fast tempo for updates and patches; more frequent, smaller patches so we can get key bug fixes to the entire community quickly. X-Plane 11 had one or two updates a year, and each update would take three months in beta because it was crammed to the gills with features. We’re targeting less than a month with these patches.
Here’s what we have shipped so far:
12.01 – lots and lots of bug fixes, new weather datarefs, and new OBJ features to help aircraft authors move to X-Plane 12.
12.02 – fixed memory leaks.
12.03 – scenery fixes, approach light fixes, and library elements to unlock the X-Plane Scenery Gateway
12.04 – in beta now! New plugin APIs (dataref introspection, sound APIs, weather APIs), weather fixes.
If there’s a theme here, it’s sanding down the rough edges of 12.0 and making sure third parties can create add-ons for v12.
Some Details: Sound
In X-Plane 11, we moved to FMOD as our sound engine; in X-Plane 12, X-Plane does not use OpenAL at all. Add-on developers have two choices:
You can still use OpenAL, but you have to include it in your add-on yourself.
Use FMOD! The X-Plane SDK has a new XPLMSound API that provides basic sound capabilities and a bridge to FMOD for advanced use.
Using FMOD lets your add-on create sound within X-Plane’s 3-d environment.
Another way to add sound: in X-Plane 12, objects added by plugins via the XPLMInstance API can include .snd files and attached sounds, just like aircraft. We use this on our ground trucks, and you can use it too.
Some Details: Approach Lights
In getting the scenery system ready for Gateway authors to create airports, we fixed a few long-standing problems for approach lights:
Approach lights will now appear over water even if you use a pier. So you can model the piers for approach lights (e.g. at KBOS, KSFO) while using the built in approach lights.
Approach lights can sit on top of gantries when they need more height, like you’d see at KBWI (see runway 10) or Dallas Love Field.
The scenery has the approach lights and approach path cut out from the autogen so you can see the lights and make it to the runway. You don’t need to use exclusion zones – the cut DSFs are more precise.
Always use the built-in approach lights – you cannot create the ‘rabbit’ strobe in an approach sequence by hand-placing the lights, so we wanted to make the built-in ones work.
What’s Coming Next
There’s a lot more we’re working on, which I’ll discuss in a future post, but here are a few hilights:
The airbus FMC is close to being ready to show – there’s a ton of new tech there.
We are rewriting a piece of the rendering engine to use VRAM much more efficiently. This should help fix blurry textures.
Lots of bug fixes and improvements to cloud rendering, including performance optimizations.
Bug fixes and improvements for physics and systems.
Several features are down-stream of improving VRAM efficiency:
We’re not happy with how orthophotos and the new water system interact, but we need the more efficient VRAM system to fix this. I’ll post about orthophoto authoring as soon as we have more information.
We have improved bloom, also dependent on the new VRAM system.
We may bring back a lighter version of exposure fusion – this will be up to the art team to decide if or how they want to use it.
Beta 6 of X-Plane 12 Early Access is available on Steam & through the Laminar Research installer. You should be prompted to auto update the next time you launch the sim, if you haven’t already. Here is a link to Early Access release notes.
This version should fix the problems launching via Steam on Linux. It also has more fixes for magenta NaNs, so hopefully there is more or widespread relief on that front.
We’ve heard multiple reports about external visual networking being broken since beta 4, and we are currently investigating.
Finally, X-Plane 12.00 beta 6 includes internal changes to support the .ktx2 texture format. We are working on tools and documentation to go with these engine changes, and will post detailed information on how to use .ktx2 once the specs and tools are complete.
Beta 5 of X-Plane 12 Early Access is available on Steam & through the Laminar Research installer. You should be prompted to auto update the next time you launch the sim, if you haven’t already. Here is a link to Early Access release notes.
This build contains a fix for the crash at start many of you reported in beta 4. So again, if you are still seeing it, let us know by filing or re-filing a bug. Windows users should include their email in the crash report so we can find your specific crash. Mac users should send the Apple crash log with their report. We are actively working on restoring auto crash reporting on Linux.
We’ve heard a lot of reports that Steam users on Linux have been unable to launch the sim since beta 4, and beta 5 is no different unfortunately. We are investigating with Steam now.
Beta 4 of X-Plane 12 Early Access is available on Steam & through the Laminar Research installer. You should be prompted to auto update the next time you launch the sim, if you haven’t already. Here is a link to Early Access release notes.
This build contains multiple crash fixes, as well as our first go at fixing the magenta (aka pink or purple) sadness. X-Plane renders magenta when it hits a numeric error (a NaN value) inside the rendering engine. There may be multiple causes of NaNs – it’s not all one bug because magenta is a symptom, not a cause, and each bug has to be squashed one by one.
Don’t be surprised if some users see less magenta in the this beta and others do not. If you still see it, please file (or re-file) a bug that includes a screenshot or two of where you see it, and any steps needed to reproduce it.
We’ll start with the wings, which I’ve found to be very important:
The entire flight model is based on a new type of memory-access that is fast for the product you get, but slower and constantly self-checking for the internal builds we run for testing. We now have vectors of props, wings, and bodies… and access those vectors by accessors that hop right through to the memory for speed in the delivered sim, but do bounds-checking first to make sure no illegal accesses are even REQUESTED in our internal self-check builds. This entire new architecture, coded by me in the first month or so of the virus – when I could not even leave my house – sets us up with a platform that is flexible, fast, and bullet-proof to use. This new architecture allows for up to 16 engines and props, which is useful for the new generation of eVTOLs, many of which have more than 8 motors and props!
Now, for these wings and prop blades, we now allow THREE airfoil files per wing, not two like we used to, so you can have root, middle, and tip airfoils, which is especially useful for propellers! Well-modeled props have thick airfoil files at the root, mid airfoil files at the mid-span, and then go to a very thin foil right out at the tip to delay shock-wave formation at high speed. We now allow all the Reynolds numbers you like for each foil, so the way to get variation with Reynolds numbers is to put them in the airfoil files in Airfoil-Maker.. we don’t have multiple slots for different Reynolds numbers in Plane-Maker any more: that was always limited and awkward: It’s much better to save all your data for different Reynolds numbers for your airfoils in Airfoil-Maker, so that’s what we do now.
So everything you are about to read about is based on a new, high-speed, self-checking memory-layout that allows 16 engines and props, and 3 airfoils per flying surface.
First off: Wing sweep improvements. As air approaches a wing, it has to SPEED UP to get out of the way of the metal. It has to speed up to go around the wing! As a wing approaches the speed of sound, therefore, the air near the wing (still speeding up!) must EXCEED the speed of sound to get out of the way of the wing fast enough! In other words, the air around the wing goes supersonic even when the wing itself is still below the speed of sound. This causes shock waves, huge drag, and even loss of lift. The thicker the wing, the more the air has to accelerate to get around it, and the greater this effect. Nobody wants all this extra drag as they fly at airliner speeds (which DO approach the speed of sound) so in World War 2 the Germans came up with a way to cheat: Sweep the wing!
When the wing is swept back, the airfoil SEEMS THINNER to the air. That means that the air is in less of a rush to get out of the way: That localized supersonic flow, and shock waves and drag that result, are delayed! You can go faster before you run into these shock waves. But here’s the thing: You can only cheat so much! No matter how swept the wing is, once your airplane is going Mach 1.00, you have fully supersonic flow over every bit of that wing: You can’t escape supersonic flow with wing sweep! Wing sweep only makes the wing seem THINNER, letting the air accelerate LESS get around it, letting you get CLOSER to Mach 1.0 before you see supersonic flow over the wing! The thinnest, most highly-swept wing in the world will not AVOID supersonic flow, it will just let you get much CLOSER to Mach 1.0 before you get supersonic flow, and drag. X-Plane 12 now understands all of this, and invokes transonic drag at the right time based on wing-sweep, and transitions to fully supersonic flow by the time the aircraft Mach Number hits 1.0. It’s a nice interpolation from the subsonic to supersonic flow models as the flow goes from transonic to fully sonic on the wing! Back in X-Plane 11, the simulator delayed supersonic flow based on wing sweep until some value PAST Mach 1.0, which was erroneous! Forget that! So here is what version 11 did wrong: X-Plane 11 simply imagined that the effective airflow over the wing was multiplied by the cosine of the wing sweep. In other words, X-Plane 11 though that if you had wing sweep, that meant that you got out of challenging the air head-on, and it reduced the effective airspeed over the wing since the wing was getting out of a direct confrontation with the air by sliding through it sideways. This was so close, but not as good as it could have been.
To REALLY get it right, we need to understand that as you approach Mach 1, we do NOT imply REDUCE THE SPEED over the wing by the cosine of the wing sweep: Instead, we are making the AIRFOIL THINNER by the cosine of the wing sweep. Mach-1 flow hitting the wing is still Mach-1 flow over the wing! Wing sweep only makes the wing appear thinner to the arriving airflow.. it does not actually reduce the speed over the wing. This is really subtle, but matters a lot for transonic drag (drag from the formation of shock waves as we APPROACH Mach 1), so we will see more accurate formation of shock waves and resulting rise in transonic drag in X-Plane 12 than we did in version 11: Make sure your wing sweep is entered correctly, make sure you airfoil thickness is entered correctly in Plane-Maker, and expect drag rise as you approach Mach 1. Thinner, more-swept airfoils will be called for, the closer you get to Mach 1. The real Citation X (and the simulated Citation X in X-Plane, of course) are perfect examples of how important these two factors are in approaching Mach 1: The wing of that airplane is very very thin and very highly swept.
New tire rolling coefficient of friction data:
Observe these charts:
As you see above, rolling coeffs go from about 0.006 to 0.01 for high-pressure tires, and 0.01 to 0.02 for more medium pressure tires.
So your planes should probably use 0.008 for the airliners and fighters, And about 0.016 for the general aviation airplanes, And about 0.040 for the piper.
Everyone that enters airplanes themselves should go to Plane-Maker and set tire coefficient of fric to about 0.008 for airliners to 0.01 for lower pressure airliners to 0.02 for light planes to 0.04 for very low pressure tires like the tundra tires on the Piper Cub.
Hydroplane speed more accurate, and on-wet friction a bit higher.
Water: Improved floatplane dynamics!
I’ve been working with Bridger Aerospace to get their fire-fighting seaplanes simulated, and the result is really incredible. It took about FIFTY different alpha builds, each one with further-refined water dynamics, but we finally have the parasite drag, wave drag, plowing, step-taxiing, running on the step, wave interaction, and even drag from the scoops on the firefighters that grab water all simulated properly for Bridger to train their next generation of pilots! So the float-plane dynamics in X-Plane 12 are now professional-grade, for people that fly float-planes to put out fires for a living!
In addition to the dynamics of the floats themselves, we have better rendered wake, wind and wave correlation, and even docking with hard docks!
One subtlety is the new wave height paradigm:
Enter the wind and stuff, and look at the wave height slider: You see the range of heights as a little tip at the bottom, so you can drag the wave height slider accordingly for the conditions you want to fly… Then, at right you see the little tip on the wavelength and speed that results from the height entered We are doing first-principles with wave length and speed, and they match up with your chart pretty close, so I think we are good there.
For real-weather, the wave height is auto-set to the SHELTERED case, based on the lowest-alt winds So I think that has us where we want to be, with plenty of little notes there in the UI to show us what is going on… and give instructors the ability to set conditions as desired.. with the notes on the defaults available to them of course
Whew!
OK I like this paradigm a lot: Total flexibility, with super-easy normal-case references available at-a-glance.
Corrected spoiler dynamics, very noticeable on airliners and the F-14!
This is big: The spoiler effects were TOO WEAK in version 11. This meant that in the sim, all the planes that used roll spoilers, which certainly includes airliners, rolled too slowly!
As a result, many people over-sized their spoilers to get the desired roll-rate… and got too much DRAG from those over-sized spoilers as a result!
Sigh.
This has now been fixed for X-Plane 12!
NOTE: Aircraft designers should now go into their aircraft and make sure that they have entered the correct sizes for their spoilers.. they should now get more-accurate results!
Just a quick note that beta 3 of X-Plane 12 Early Access is available. You should be prompted to auto update the next time you launch the sim, if you haven’t already. Here is a link to Early Access release notes.
Beta 4 is currently in the works, going through test so we can release it next week. We expect to have our first go at fixing the magenta (aka pink or purple) sadness in that release, so please hold off on filing any further bug reports on this until you can try beta 4.
And this just in: X-Plane 12 for Steam is now available!
Well, this has been a crazy couple of weeks. X-Plane 12.00 is now available for Early Access – in other words, everyone can get X-Plane 12. Over the next few weeks we will post more about ongoing development and get into some of the new features in depth – there’s a ton to talk about in X-Plane 12. For today, here are just a few notes on some issues that have come up over the last few days.
Early Access
X-Plane 12 has been in a private alpha test program with third parties since December (!) – almost nine months. During that time we built 38 (!) official alpha builds, recut the global scenery five times, and committed over 4000 checkins to X-Plane’s source code (plus more to the aircraft, scenery tools and art libraries). The alpha program included completion of major features, lots of debugging, and changing the product in response to early alpha feedback.
So why Early Access now? Not because X-Plane 12.0 is done – we still have over two hundred open bugs and a lot of things we want to do. X-Plane 12 is in Early Access so that the entire X-Plane community can be involved in X-Plane 12’s growth, not just a limited number of testers.
With X-Plane 12.0 in early access, we don’t have to say ‘no’ to users and devs who want to get started with 12, and third parties can get their entire teams using the new sim and run their own test programs.
(We can also finally open up our developer relations program to a wider audience.)
Major Areas of Work
Here are some of the major areas of work ahead of us:
Clouds – we are working on the shaping and quality of clouds, improving resolution, fixing artifacts, and improving performance. Clouds are probably the single most expensive part of the renderer, so they are a constant tug-of-war between quality and speed.
Lighting – there are quite a few lighting and atmospheric scattering bugs that affect the sim, as well as work to do improving auto-exposure and tone mapping.
Philipp is working on an airbus MCDU, which we expect to ship during early access.
Third party interfaces – we have a few new SDK and authoring features that are mostly completed that will ship during early access. The elephant in the room is third party access to the weather system.
That’s One Blurry Airbus
X-Plane 12 moves some work that used to be on the CPU to the GPU (looking at you, ocean waves!), and virtually all new computing work in X-Plane 12 is on the GPU. When we discussed this before Early Access, there was a lot of teeth gnashing. “You’re gonna use more GPU power? I can’t buy a 3080, I’d have to sell my kidney!”
We still have a lot of GPU optimization left to do, but we also spent some time before beta 1 working on performance, particularly at intermediate settings. User with high end hardware have been pleasantly surprised to see production-level FPS in beta 1, and a common request is “I have 60 fps and blurry clouds, can I get a higher max setting.”
(I do suspect there is a huge gulf between the haves and have-nots for GPU power – because there’s a huge range of hardware performance amongst our users. We will keep optimizing.)
What we didn’t optimize was VRAM use, and this is why blurry textures is a common problem with the first beta. X-Plane 12 uses Vulkan/Metal as its renderer, always, so it uses our Vulkan/Metal memory management strategy: we dynamically bring the resolution of textures down to fit within your available VRAM, with some guessing as to which textures are most important.
The texture slider in the UI sets the maximum texture resolution X-Plane will attempt – if you have a card without a lot of VRAM, setting this lower can help avoid “thrash” as X-Plane tries to fit 4 GB of textures into 2 GB of VRAM. But X-Plane will further lower res until it fits – X-Plane will not use system memory as backup texture memory, nor will it slow the framerate and stutter by shuffling textures between vRAM and system memory on the fly.
I’m afraid I don’t have any useful information about how much VRAM will get you a better experience – we’re going to do an optimization pass and see what we can tighten up.
I suspect the big driver of VRAM is memory used for effects – X-Plane 12 has HDR always on, but also has extra VRAM reserved for screen space reflections, 3-d water, dynamic weather effects, clouds, etc.
One thing that can help (and I know no one wants to hear this) is to run at a lower resolution. The sim has to internally use VRAM proportional to the size of the winddow or monitor res you fly at. Jumping from 1080p to 4K doubles the resolution in each dimension (making each pixel half as big) but uses 4x the VRAM for surfaces. Full screen anti-aliasing increases VRAM by its factor (4x MSAA = 4x VRAM) for some of those textures, so it’s more efficient than higher res.
What’s All This Magenta
X-Plane renders magenta when it hits a numeric error (a NaN value) inside the rendering engine. Right now there are multiple causes of NaNs – it’s not all one bug because magenta is a symptom, not a cause. A few we know about:
We believe there’s some kind of problem specific to the GeForce 900 series. Sidney bought one on eBay so we can debug this.
I’ve seen NaNs caused by the traffic debugging lines for ATC – I suspect that particular shader has a bug.
We can sometimes get NaNs from the past frame – they get “reflected” by SSR and propagate from one part of the frame to the other.
There’s no easy answer here – each bug has to be squashed one by one. These are high priority bugs and we’re working on them now – hopefully each fix will make things a bit better, but don’t be surprised if some users see less magenta in the next beta and others do not.
Fuzzy Scuzzy Rendering
FSR stands for FidelityFX™ Super Resolution. FSR is AMD’s free open source up-scaling technology. The idea of up-scalers is:
Lots of people have 4K monitors.
Not as many people have GPUs that can run games and simulators at 4K – they’re expensive.
Upscaling a 2K image with a little bit of smarts uses a little bit of GPU and looks a lot better than just running the monitor at low resolution.
When you move the FSR slider to the left, X-Plane renders its 3-d image at a lower resolution and then upscales it to the monitor. This saves GPU time and VRAM at a cost of image quality. The image should look better than running at low resolution but not as good as running at high resolution.
Should you use FSR? I would only recommend using FSR if you want to/need to run at 4K and your GPU is struggling. Support has had a number of complaints about blurry rendering from users with FSR on – FSR is resulting in a less detailed image on purpose just like reducing resolution does. If you are going to use FSR, use full screen anti-aliasing – it helps.
We are still undecided about the future of FSR in the simulator. We added the option of up-scaling based on user requests, and if we didn’t ask for it, we’d probably be asked for it. But we’ve also had lots of “I set this slider low and now everything looks terrible.”
(Why don’t we use FSR2 or DLSS? Both of these upscalers require motion vectors as inputs from the rendering engine, something X-Plane does not provide. We may support them in the future, but adding motion vector generation is not trivial.)
Beta 3 Coming Soon
Over the past weekend part of the team met in person to do planning and roadmapping; beta 3 should be available shortly, with some of the bug fixes we’ve already coded. X-Plane 12 for Steam is in review — hopefully it will be available Real Soon Now™.
Our next milestone is the Early Access release of X-Plane 12. As we get closer to this public stage, we wanted to share a quick look into where we are in the development process, what’s being worked on currently, and what else needs to be completed before we release.
During Early Access:
Everyone will be able to purchase X-Plane 12.
X-Plane 12 will be available for purchase as a digital key for $59.99, just like always.
During Early Access, X-Plane 12 digital keys will include access to X-Plane 11 as well.
DVD copies of X-Plane 12 will be available later on, once X-Plane 12 is out of Early Access. These will be available from X-Plane.com in North America and by Aerosoft in Europe.
Early Access will also be available on Steam.
Flight Model
In Final Testing
Austin is working on a blog post now to provide an overview of the changes that have been made for X-Plane 12.
World Features/Global Scenery
Completed
Rain/Snow shaders for airports and global scenery
In Progress
Complete data import/finish scenery tile generation.
We import piles and piles of data and then use it to create our global scenery. Due to the sheer size of this data, the import process alone takes several days .
Improve performance of 3D trees.
Tune coastlines/beaches embedded new scenery tiles.
Boat/Seaplane 3D wake drawing.
Complete ortho photo compatibility.
We know that users have all sorts of ortho photo packs that they are using currently in X-Plane 11. Our goal is to maintain compatibility as much as possible.
To-Do
Finish implementing geographically-aware water colors.
Airport Features
Complete
Fully animated jetways.
Modular tower building kit for Gateway artists.
New ground vehicles with updated driving logic.
FMOD sounds for ground vehicles.
Dozens of new static aircraft + new airline/airport based logic for livery selection.
In Progress
New (all electric ⚡️) passenger buses
Fleet
Completed
SR22
R22 (skids/mariner versions)
Citation X
RV-10
PA-18
In Progress
A330
While this aircraft is ready for an initial release, there are some additional features that we are still working on – specifically a custom Airbus FMS.
F-14
To-Do: Finish liveries and finalize autopilot behavior/cockpit details.
Weather Engine
Largely complete – including fresh data sources for real weather, new logic, new rain/snow accumulation/windshield effects, new volumetric 3D clouds, etc.
To-Do
Fix a handful of bugs in the volumetric cloud system.
Ensure weather continuity between networked simulators.
Here’s a quick update on X-Plane 12 to give you an idea of where we are, what’s being worked on right now and what the next steps are. At the end of last year, we started sharing early, rough builds of X-Plane 12 with a private alpha group, mainly 3rd party developers and subject matter experts. Everyone in the alpha program has signed a non-disclosure agreement, so please do not ask them to share X-Plane 12 or technical details. (The alpha program is also ful, please don’t email us for access… sorry.)
Here’s a snapshot of some of the development tasks we’re working on right now.
Recently Complete
In Progress
Up Next
Default Fleet Updates
Low Visibility
Rain Improvements
Rain/Snow on Runways
Water
Performance Tuning
Prop Physics Updates
Anti-Aliasing and FSR
Restore VR
3D HUD
Night Lighting
Recut Default DSFs
ATC Overhaul
Third Party APIs
Bug Fixes
Seasons
3D Trees
UI Refresh
FMOD 2.0
Moving Jetways
There’s a lot more that is already completed, too – this is just a window into our current work. Once we complete all of the open development tasks, there are still plenty of bugs to fix.
At some point during this bug fixing process, we will transition from the closed private alpha to an open “Early Access” beta program. Once we make this transition, anyone who wishes to participate in Early Access will be able to purchase a license of X-Plane 12 and use the new sim right away.
Here are some details on our recent development work.
Light Up the Night
X-Plane 12’s lighting engine is completely photometric and runs in true HDR at all times. This includes updates to how we do night lighting and artificial light sources. We are finishing up a very careful pass over a wide variety of light sources – urban lights, street lights, and most importantly light sources that affect pilots (e.g. approach lights, runway edge lights, PAPIs, etc.). The intensities of these lights are calibrated using spec sheets from the FAA.
Low Visibility
The new lighting engine also requires us to take a new approach to low visibility flying conditions. Low visibility daytime conditions in X-Plane 12 are naturally darker than sunny days, but also still lighter than night time flying. Low visibility isn’t just about making X-Plane look nice – X-Plane is used as a training simulator, so we need to make sure that visibility is limited by just the right amount to train for instrument approaches.
To solve this problem, our art director Alex Unruh built…a monolith.
The monolith is a calibration target for tuning the simulator – based on a certain position on the runway and the right visibility settings, the monolith will be just barely visible. The monolith is surrounded by runway lights so we can make sure the approach and edge lights respond to fog appropriately as well.
Water, Water Everywhere!
X-Plane 12’s water is 3D. Not only does this make ocean waves more realistic, but this 3D water interacts with the flight model. Austin has worked closely with seaplane pilots during alpha testing to dial in seaplane behavior.
A new feature in a simulator can create new bugs that need to be fixed – this is why we invited our third party developers to try out the simulator early in the process. For example: When we made the water waves 3D, they started sticking up through orthophoto scenery. (In X-Plane 11, orthophotos just “paint over” the 2D water.) Last week we implemented water masking, so that orthophoto scenery can cut out the 3D water to avoid these bugs.
Anti-Aliasing
X-Plane has featured a deferred renderer for almost a decade; with X-Plane 12, deferred rendering is the exclusive mode our graphics engine runs in – this is important because it makes the new weather effects and lighting possible.
With X-Plane 12 we now support real multisample anti-aliasing (MSAA) with our deferred renderer. In some versions of X-Plane, MSAA wasn’t compatible with deferred rendering, and the AA options were FXAA and SSAA. This was frustrating to users because SSAA severely hurts framerate. If your GPU is maxed out, 4x SSAA will typically cut your framerate by …. 4x.
The new MSAA code path should be much more efficient. We are also implementing AMD’s FidelityFX Super Resolution (FSR). FSR lets us render the world faster and then scale the result up to 4K – it’s a great option for users who want to fly in 4K but keep their framerates up. You can read more about FSR here.
Supporting Third Parties
With the new major version we are making some changes to the plugin environment:
The X-Plane SDK supports the new ARM M1 Macs.
We are removing OpenAL from X-Plane. X-Plane itself hasn’t used OpenAL in years, and we are in no position to support it. Plugins that use OpenAL in X-Plane 12 will need to package OpenAL themselves.
We are making the FMOD API available to plugins (in a few different ways) so that plugins that generate sound can interact with the full 3-d sound environment.
In X-Plane 12 we run Chromium Embedded Framework (CEF) at startup. In X-Plane 11, the first plugin to run CEF would ‘own’ it; this new setup allows X-Plane and all plugins to share CEF and should make it easier for plugins that need to access web pages to do so.
We are building our own test plugins and working with our third party developers to make sure these new pathways have been tested experimentally.
A major focus of the private alpha is to make sure that these changes will work with third party add-ons the way we expect, so we’ve prioritized getting the changes into the alphas early so our third party developers can try them.
What’s Next
The next phase after private alpha will be a completely unrestricted Early Access beta program – everyone will be able to run the X-Plane 12 beta (either as a demo or with the purchase of an X-Plane 12 license).
We have some feature work to wind down with some of these third party cases and new features, and once that is done, it’s going to be bug fix, performance tune, repeat, repeat, repeat to get to Early Access.
All aircraft in the X-Plane 12 world cast a wake turbulence – a wing cutting through the air in X-Plane 12 leaves a vortex in the air that swirls inward over the wingtip, and sinks slowly as it dissipates energy over time. The strength of the vortex and its lifetime depends on the lift force generated by the wing (i.e. a wing that has to lift a 172 does not create a strong vortex, whereas a wing that supports a 747 surely does). Over the course of its life, the vortex sinks slowly and is displaced by the prevailing wind.
Flying through such a vortex can be dangerous! If you cross the vortex left by an airliner while flying a 172 yourself, be prepared to be tossed around or even flipped upside down. If you do the same with roles reversed, you might see a slight bump just enough to ripple the surface of your coffee (be sure not to do this in an A350 as spilled coffee can cause in-flight engine shutdowns).
Wakes left by AI aircraft
AI aircraft in X-Plane run the full flight model. That is, each wing is calculated using the same methods and with the same accuracy as for the user aircraft. Thus the amount of energy left in the wake vortex is clearly known, it just comes from the flight model. Therefore, if ATC clears that 747 to take off before you, be sure to stay above their flight path until you can turn away from it. For landing, stay above the preceding planes path and touch down slightly further down the runway than they did to stay safe.
Wakes left by online traffic, live traffic, and other plugins
For aircraft that are not run by the X-Plane flight model, such as other players’ aircraft from an online network, or real-world traffic injected from a plugin like Live Traffic using data from an ADS-B exchange, X-Plane makes a best effort guess based on the data provided by the plugin. The plugin can tell X-Plane how heavy the aircraft is, and its wing area and wingspan. In the absence of this data, X-Plane will fall back on a fairly conservative light aircraft estimate, assuming a Learjet-sized aircraft weighing 10 tons with a 12m wingspan. This means you are not going to get flipped upside down in your 737 if you end up flying through a wake left by an old plugin. This is to minimize user frustration with existing online flying plugins. Since the wakes are technically an extension of the TCAS override API used by plugins since X-Plane 11.50, all plugins that show traffic in X-Plane 11.50 are compatible with wake turbulence generation and will gain that base functionality automatically when used in X-Plane 12.
Wake turbulence data for plugin authors
Plugins can use new datarefs starting with X-Plane 12 to inform X-Plane of physical properties of the non-player aircraft that are then used for a more accurate strength and duration of the wake. By writing to the new datarefs, a plugin providing traffic data can upgrade from the “generic Learjet wake” to an accurate wake representative of the aircraft they are actually drawing.
Learn about wake turbulence avoidance
In X-Plane, you can cheat and make the wake left by an aircraft visible by having it drawn in the sky in a color scheme showing its danger (from red over orange and yellow down to green) so you can avoid it (or fly through it on purpose to experience the effect). Wake visualization is just one of the many graphical flight model outputs available. Press Ctrl+M to toggle graphical flight model output in X-Plane. By repeatedly pressing Ctrl-M you can cycle through all the visualizations available, while a small white label tells you what you are looking at. Keep toggling until you see “Wake Turbulence” displayed and marvel at the air disturbance waiting to make your day interesting.
You can also use X-Avion on your iPad to have wake turbulence danger zones visualized – this works in real airplanes using ADS-B data, and it works in X-Plane when driving X-Avion over network.